

 NATIONAL

UNIVERSITY OF

SINGAPORE

In collaboration

with

A*STAR

[DESIGN REPORT : LEO10]

Design Report IGVC 2010

LEO10
National University of Singapore’s Entry to IGVC 2010

Dev Chandan Behera, Ankit Sachdev, Hitesh Dhiman, Dr. Prahlad Vadakkepat
National University of Singapore

Abstract— We present LEO10 an autonomous ground

vehicle developed by the KARR team from the National

University of Singapore (NUS). LEO10 is a lightweight,

modular, power efficient intelligent autonomous robot

running on Robot Operating System (ROS). This robot

is National University of Singapore’s first entry at the

Intelligent Ground Vehicle Competition (IGVC) in

collaboration with Data Storage Institute, A*STAR.

LEO10 is a completely in-house designed robot from

scratch by three undergraduate students.

Keywords- ligtweight, modular, power efficient, ROS,

IGVC

I. INTRODUCTION

The team members of KARR got together in early

August 2009 to brainstorm ideas on how to design

and create a vehicle that will stand out at the

competition. We used a systems based design

approach to build the autonomous vehicle from

scratch.

The software platform we will be using for the robot

is Robot Operating System (ROS) developed by

Willow Garage Inc. which will run on Ubuntu and

Arduino for our motor control.

After thorough research from previous year’s entries

at IGVC, it was decided to build a lightweight,

modular and low power consuming robot for IGVC.

The advantages that Robot Operating System (ROS)

offered over Stage and LabView confirmed ROS as

the software running on the robot with Arduino to be

used for Motor Control.

The objectives of the Robot were finalized that led to

the subsequent stage of selection of components and

LEO10 was successfully fabricated completely in-

house from scratch in 1 semester to compete in IGVC.

II. DESIGN PROCESS- ITERATIVE DEVELOPMENT

The agile iterative development process was used to

start the KARR team and build the robot, LEO10 as

an effort to start an undergraduate student IGVC team

in NUS and to ensure continuity of the team.

Figure 1. The

Team

We brainstormed over the various possible features

that could be incorporated in Leo10 along with the

basic capabilities required to compete at IGVC. The

priority level of all the features was evaluated after

which the list was cut down. The tasks were thus

divided into 3 segments with each individual

responsible for the development of a particular set of

features for LEO10. The components were chosen to

suit our needs for the competition after ensuring their

compatibility and performance with ROS. The

challenges were prioritized based on the sensory

requirements and the project was planned in the

direction of completing the specific milestones at

specific deadline. The software was developed and

tested on the Pioneer P3DX before it was migrated to

our own robot, LEO10.

Figure 2. Agile Development

Process

III. DESIGN OBJECTIVES

The task of building the robot from scratch required

clear design goals which were:

A. Lightweight:

To be able to move smoothly, decrease the work

done by the motor and reduce the power consumed

by the drivetrains, it was essential to decrease the

weight of the robot. We prepared a weight budget of

the mechanical structure, drivetrains and other

hardware components to optimise the weight of the

robot to 23 kg which would be considered as one of

the lightest vehicle at the competition. The drive

trains and frame structure will be covered in detail in

the mechanical design section

B. Compact:

 The idea behind making a compact and modular

robot was the ease of transportation and storage.

Moreover, modularity of the structure offers the

possibility of customizing the dimensions of the robot

subjected to the hardware or task requirements of the

end users.

C. Power Miser

The design process also included the power

budget of the robot which we think is an essential

part of the process in the design as the robot should

have a good amount of battery life to be

autonomously running.

IV. LEO10 SYSTEM OVERVIEW

From the point the robot is switched on the three sensors i.e. LIDAR, Camera and the IMU/GPS system start to poll

data simultaneously. The navigation algorithm in ROS takes this information and plans the path accordingly. In the

autonomous challenge the robot will be continuously given pose information as its goal to move forward where as in

the Navigation challenge the waypoints will determine the robots goal. Figure 3 shows the complete system diagram

of LEO10.

Figure 3. System overview

V. MECHANICAL SYSTEMS

 Apart from being lightweight and compact one

important feature LEO10’s mechanical design is that

all the drivetrains are independent of each other and

is a four Wheel Skid Steer Mechanism. Independent

drive trains with individual suspension that will add

to the all terrain capability of the robot. However for

this year, we decided to go without suspension for

simplicity of the first design of the robot.

TABLE I. MECHANICAL DATASHEET

Length 1.10 m

Width 0.64 m

Height 1.49 m

Weight(without payload) 23 kg

Ground Clearance 0.05m

Payload Capacity 20 kg

Wheel Diameter 8 inches

Maximum Speed(80% Efficiency) 1.85 m/s

Operational Speed 5 m/s

A. Methods of Design

LEO10 was conceptualized and designed in detail in

Solidworks 2009. Each component and assemblies

were confirmed as non-interfering and constrained

using the computer aided design (CAD) program.

Simulation Study features in the program was used to

do the Finite Element Analysis (FEA) so as to ensure

that the structural parts maintain a factor of safety of

at least 5 under worse cases of loading.

B. DriveTrain Design

Leo10 has four independent drive trains each

powered by light weight Dynamixel-RX 64 motors.

The main feature about this design is the modularity

of drive trains which makes replacement of parts and

assembly of the design simpler. There is a motor

plate customized to hold the Dynamixel motor which

mounts onto the coupling block on which the weight

of the robot actually acts. The Oldham coupling

inside the block ensures transmission of power from

the motor shaft to the wheel shaft. The wheel shaft is

well supported by the flanged ball bearing on the C

bracket on the other end of which the encoder plate

housing the US Digital E2 Optical encoder is housed.

The power requirements for motors were calculated

taking the scenario that the vehicle is climbing the

ramp at an angle of 15°. The power required for each

motor is 24.2 W.

All the parts were fabricated from AL-6061-T6

aluminum except for the shafts which were fabricated

from 403 Stainless Steel.

C. Profile Body Design

The chassis was fabricated from Item® profiles 20

mm by 20 mm in dimension. These profiles are light

weight and provide the option of mounting at desired

points. Hence it is easier to adjust the heights of the

LIDAR and the camera when mounted on these

profiles.

The weight distribution was done equally in the front

and the back frame and the drive trains were mounted

at a ground clearance of 5 cm. The centre of gravity

of vehicle is towards the centre of the robot and low.

The total weight of the chassis is about 7 kg.

D. Enclosure and Sensor Mounts

The front and the back frame were enclosed with

scratch resistant plastic panels sealed with rubber

lining on the profiles. All the circuits and Unibrain

camera are protected inside IP66 containers to

prevent water from damaging the components. The

laptop will be placed in a safe enclosure that will

mount onto the back frame. For easy access of the

components inside the back frame is a hinged panel.

 The Hokuyo LIDAR is mounted to Dynamixel AX-

12+ motor to provide 3D scanning. It is protected by

the protrusion of the panel on top of it.

Camera Stand

Load Frame

Back Frame

Front Frame

Dynamixel RX-64 with
customized mount

Coupling Block

C Bracket

Encoder

VI. ELECTRONICS SYSTEM

A. Wireless & Hardware Emergency Stop.

LEO10 is installed with a wireless relay board with

an Arduino-Mini Pro microcontroller and an AR6200

DSM2 receiver to enable remote emergency stop

capability. Spektrum DX6i receiver has 6 different

RF channels, amongst which the gear channel is

monitored for the emergency stop (figure 1.1); since

it is has only two states. The wireless receiver relay

board is connected in series with the main relay

power board to stop the current flow to the motors

when the e-stop button is pressed.

For the hardware E-Stop, a push button is placed on

the back of the robot connected to the main power

board, which shuts off all power/electronic operations

on the robot. Unwinding the pushbutton will reset the

robots systems and return to normal state.

B. Manual Control

The AR6200 DSM2 receiver, used for the wireless

emergency stop will also be used to manually drive

the robots with a joystick. The AR6200 DSM2 has 6

different channels which are usually used as receivers

on RC aircrafts. In our case we are going to use only

2 channels to drive the robot. The rudder and throttle

joystick on the DX6i transmitter is used to control the

direction and the speed of the robot, respectively. An

Arduino-Mini Pro microcontroller is used to process

the PWM signals from the receiver and output the

desired controls to the global motor control board.

C. Drivetrain Control System

Each of the 4 drivetrains on the robot is equipped

with Dynamixel’s RX64 motors, which can handle

6.4 N/m with at a maximum RPM of 114 at max

operating voltage. The motors have an internal

controller and driver which can be controlled by

packet communication through a bus, supporting

RS485 network.

Our motor control system consists of 2 layers, 1

global control board and 4 custom mini-boards for

each drive train. The global motor controller is an

Arduino Mega board with an Atmel 1280 chip, which

is programmed to manage the communication

between the path planning algorithm on the computer

and each motor control board as well has handle the

link between the wireless transmitter and receiver for

manual driving.

Each mini control board consists of an Arduino mini,

RS 485 breakout chip and other power modules. The

micro-controller gets speed values from the Global

motor control board and converts it into RX-64

communication packets to drive the motor. It takes in

encoder values, processes the data and sends it to the

global motor control to carry out the kinematic

modelling for Dead-Reckoning. Communication

between the boards is handled by I2C. Each board

also carries its own power regulation modules.

Figure 4. Circuit board inside the IP-66 casing.

VII. POWER SYSTEMS

A. Power Budget

One of our design objectives was to reduce the

overall power consumption. Literary research

suggested that drivetrains consume up to 60% of a

robot’s power capacity. With our innovative

drivetrain design we have reduced the overall power

consumption to 39% and still retained a sufficient

maximum torque limit to traverse challenging

terrains. The total power budget is given in the table

Figure Pie Chart for Power Consumption in Watts

The total power requirement of 90.59W is at

optimized operation of the robot running at the speed

of 0.5m/s. This makes our robot one of the most

power efficient designs in the competition.

B. Power regulation and distribution

To go with the design objective of a light weight

robot high power Li-Po batteries of 25.9V 10 Ah and

14.8V, 7Ah were used at a weight budget of 2.5kgs.

Total Battery Run time for Battery pack is 2h 38

minutes at 25.9V and 6h 14 minutes at 14.8V. The

battery voltages are stepped down to 18V, 12V and

5V respectively by Anyvolt 3 DC-DC converters and

25W Step down adjustable switching regulators.

Output Power to
the motor

25.9V to 18V
DC-DC converter

RS485 Breakout board for
RX64 Communication

Encoder
Input

Arduino Mini
Microcontroller

C. Battery Management

Depleted batteries can be replaced easily without

affecting the robots state as the laptop has its own

internal battery and thus the software process keep

running.

VIII. COMPUTING SYSTEMS:

A. Software:

LEO10 uses Robot Operating System, or ROS as its

software platform. ROS is an open source, 'meta

operating system', and runs on Linux.

The basic motivation behind using ROS was:

• Open Source, hence lesser costs for software

• Stable and robust platform.

• Provides integration of OpenCV, Player/Stage

and Gazebo under one package

• Well supported libraries for common

algorithms.

• Supports both C++ and Python code.

As stated above, ROS behaves like a meta-operating

system, where the 'core' provides the basis for all

other 'packages' to run on it. The core handles all the

communication processes, while packages are user

written programs that run as separate 'nodes',

connected to each other, forming a network.

The nodes running the navigation algorithm on our

robot are given in figure 5.

Figure 5. ROS Nodes Overview

The encircled names are the 'nodes' and the arrows indicate the message names along with the direction of

communication that these nodes use to compute tasks.

B. Lane Detection

Lane detection is done via a fire-wire camera

(Unibrain Fire-i Board Pro).

ROS uses the cameradc1394 node to initialize the

camera, and publishes the images under the /Image

message. For image processing, we use OpenCV

which takes in processed images in the ipl format,

done by the CvBridge node in ROS.

Rather than relying on the visual information

independently, the image processing is incorporated

into the decision making process. This is done by

converting the lines detected into laser scans, in a

format that can be understood by ROS as a laser

sensor. This means that the lanes detected appear as

solid walls i.e. obstacles to the robot, and so the robot

will try to avoid the side lanes.

C. Pose Estimation

For estimating the pose of the robot, we use EKF

(Extended Kalman Filter). This feature has been

implemented as the robot_pose_ekf node in ROS.

This node takes in combined information from

various sensors:

• 2D Pose: Wheel odometry gives the ground

pose of the robot.

• 3D Pose: An IMU records information about

the roll, pitch and yaw of the robot.

• 3D Position: A GPS sensor gives information

on the position of the robot in the 3D plane.

D. Obstacle Avoidance & Navigation

Avoiding obstacles is the fundamental task of

LEO10, is achieved using a Costmap based

algorithm. ROS already has an implementation of the

Costmap2D algorithm. Briefly, the algorithm can be

explained as follows:

• Upon receiving real world obstacle information,

the algorithm builds a 2D occupancy grid, where

each cell that is known to have an obstacle is

associated with a cost. The cost is maximum for

obstacles near the robot (known as ‘inflated’

cost), and reduces with distance. Cells can be

marked as ‘occupied’, ‘free’ or ‘unknown’ based

on the information available about them and the

costs they acquire. A total of 255 values are used

for costs, grouped under the 3 categories stated

above. Upon performing an initial run, a global

path is planned, based on the lowest cost path

available at that moment.

• As the robot moves along the path, there is a

local plan that will iterate through the sensor

information and plan velocity commands to drive

the robot locally. The significance of the local

path lies in its property; the global path can be

planned with relatively inadequate information

due to distance limitations of sensors (LIDAR

for example). The local path works as a

corrective measure: as the robot acquires

information while moving close to the goal, the

local path will adjust itself, avoiding obstacles

while staying close to the global path. An

example is shown in the simulation discussed in

the following section.

• In cases where a path is not viable, or the robot is

blocked, a 'recovery' operation is performed.

This means that the robot will make a full turn of

360 degrees, and try to clear out its space by first

maintaining a clear distance from any obstacles it

is too close to, and then planning a path again. In

Figure 6, the global path is shown in green, while

the local path is shown in yellow. The orange

area represents the inflated regions that have

been assigned a cost. The red arrow marks the

pose of the robot, and will travel with the

rectangular 'footprint' of the robot.

Figure 6. Obstacle Avoidance Solution. Orange areas represent
the inflation radius of the obstacles, the thick green lines represent
the while lanes.

D. Simulation

To test the algorithm, we used the gazebo

implementation in ROS. The robot was provided with

a map, and then given a goal to achieve in the map.

Examples are shown in the pictures below:

Figure 7. Simulation Environment.

Figure 8. Simulation Environment

Referring to figure 7 the thick green lines represent the walls

detected by the robot, and the blue regions represent the costs

assigned to these walls. The global plan passes through the

wall because information about the front wall is not known at

the starting point of the simulation. On reaching close to the

wall, the local plan curves around the wall.

In the case of figure 8, the robot has a clear way to the goal,

and thus the local plan coincides with the global plan.

IX. CONTROL SYSTEMS & SENSORS

The software development cycle involved a bottom up

approach, i.e. design of the motor control was done first and

the path-planning algorithms were implemented at the end of

the development cycle. Each control system is described

below in detail:

A. Motor Control System

1) Mini-Control Board :

Arduino mini pro microcontroller is programmed to perform

the PID control of the Dynamixel motors. Since the

Dynamixel has its own controller the ramping up of to the

desired setpoint is done smoothly and the arduio’s job is to

maintain the output through feedback from the encoder values.

The flowchart below shows the control algorithm

implemented. *GMC = Global Motor Control board.

Figure 9. Flowchart of theMini-control board

2) Global Motor control:

GMC consists of only an 8 bit Arduino Mega controller

which is responsible for the following tasks:

• Handling encoder information and sending the

odometry values to the computer. Encoder values

requested at a frequency of 50Hz.

• Communicates with the laptop to get the speed

values for individual motors and passes the

information over the I2C channel, where all the

motor control boards are connected to the same

bus.

• When set to manual control mode, it receives speed

values from the Wireless control system and

performs inverse kinematics to set individual motor

speeds for movement.

Start

Receive Encoder Inputs (Interrupt)

Increment encoder count

Pid(loop) every
55 ms

Calculate Speed

PID Input

Output speed
to motors

Refresh
encoder
values

Input Value = Individual
Speed from GMC*

Speed Ramp (Divide the
value into 10 intervals)

PID Setpoint

Read Encoder counter

B. LIDAR System – Obstacle and Ramp Detection

Fixed single line LIDAR’s are unable to differentiate obstacles

from elevated paths such as ramps. To overcome this

limitation LEO10 is installed with a tilting LIDAR mount ,

controlled by an AX-12 motor which rotates the Hokuyo

UTM-30 LX (30m, 270° scanning range) in the Y axis

allowing it to take multiple scans, and generate a 3D point

cloud. We then use ROS’s point cloud library to distinguish

obstacles from the path.

Figure 10. LIDAR mount

C. Camera

The onboard camera used is a Unibrain Fire-i Board Pro. The

lens used is a fisheye 2.1mm with IR coating. The camera is

powered by the 1394 firewire port, which takes a picture at a

frequency of 15Hz. The picture is then processed with

OpenCV architecture as discussed before. The lane detection

algorithm can be best explained diagrammatically:

Figure 11. Lane detection algorithm

The images are obtained and processed, to remove any barrel

distortion. Processing of the information is done via the well

known Hough Transformation. Hough Transform gives us the

lines in the (ρ,θ) format, where rho describes the perpendicular

distance of a line, and theta is the angle of rho in relation to

the pole.

Figure 12. Hough transform example

Figure 12 shows the results of the lane detection algorithm on

a sample image. The red line indicates the line detected by the

algorithm. The rho and theta values are explained in the

diagram. The se values are then passed to the navigation stack

to constrain the final path.

D. IMU/GPS/Gyroscope

To get the inertial accerelation and the position data, LEO10

uses the Landmark 20 IMU/GPS module. Although the IMU

provides orientation and the vehicles angular velocity, the

stability of the gyroscope by CruizCore XH1010 was

significantly better i.e. 10°/hr compared than to the IMU

which was 30°/hr. ROS interfaces with the devices through the

USB channel/extracting the data serially. We use an Extended

Kalman Filter node to fuse the odometry values from the

encoder, orientation data from the CruizCore gyroscope,

acceleration and position data from IMU/GPS module

Rho
(ρ)

Theta (θ)

For Pose Interpretation, the node uses ‘relative’

difference in information of these sensors, and updates the

Kalman Filter parameters. Over time, the covariance in the

odometry data will increase and grow out of bounds. Hence

the node measures difference in this covariance over time

(Covariance Interpretation), and uses the information to

dynamically adjust the measurements as well as maintain

minimal noise to accurately determine robot position and pose

at any given point in time.

Figure 13. Example of EKF , source: www.ros.org

X. ESTIMATED PERFORMANCE

Parameters Estimated
Performance

Test
Performance

Speed 0.5m/s 0.45m/s
Ramp climbing Climbs at

0.3m/s
Climbs

successfully
with varied

speed
performance

Reaction times of E-
stop

0.1s ~0.5s

Battery Life 2h 38mins ~2h
Distance obstacles

detected at
3m ~3m

Waypoint accuracy Tolerance
0.1m

Tolerance
0.25m

XI. CONCLUSION

The development of LEO10 from scratch was a challenging

task for the 3 member undergraduate team. The aim behind

LEO10 is to make it more than a successful all terrain robot

with navigational capabilities, to make it a stable platform for

robotics research and applications in future. Effort has been

made to incorporate latest hardware, software and mechanical

design and come up with a robot will set high standards in

IGVC in future. There are many design features that have been

planned to be implemented in the coming future versions of

the robot.

XII. REFERENCES

Krzystof Kozlowski, D. P. (2004).
MODELINGANDCONTROLOFA4-WHEELSKID-
STEERINGMOBILEROBOT.

Marder-Eppstein, E. (n.d.). ROS Navigation Stack. Retrieved
4 20, 2010, from http://www.ros.org/wiki/navigation

Meeussen, W. (n.d.). ROS: robot_pose_ekf. Retrieved 4 12,
2010, from ROS Wiki:
http://www.ros.org/wiki/robot_pose_ekf

XIII. ACKNOWLEDGEMENTS

We would like to thank DSI, A* Star for funding us for the

project and providing us with lab space and mentorship. We

are grateful to Mr. Vikas Reddy for guiding us throughout the

development and lending us his immense experience while

acting as a senior advisor for the group. We would also like to

thank Prof. Prahlad Vadakkepat for helping us in liaising with

NUS and making the project a success.

